\(\int (a+b x)^m (c+d x)^n (e+f x)^p \, dx\) [142]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 123 \[ \int (a+b x)^m (c+d x)^n (e+f x)^p \, dx=\frac {(a+b x)^{1+m} (c+d x)^n \left (\frac {b (c+d x)}{b c-a d}\right )^{-n} (e+f x)^p \left (\frac {b (e+f x)}{b e-a f}\right )^{-p} \operatorname {AppellF1}\left (1+m,-n,-p,2+m,-\frac {d (a+b x)}{b c-a d},-\frac {f (a+b x)}{b e-a f}\right )}{b (1+m)} \]

[Out]

(b*x+a)^(1+m)*(d*x+c)^n*(f*x+e)^p*AppellF1(1+m,-n,-p,2+m,-d*(b*x+a)/(-a*d+b*c),-f*(b*x+a)/(-a*f+b*e))/b/(1+m)/
((b*(d*x+c)/(-a*d+b*c))^n)/((b*(f*x+e)/(-a*f+b*e))^p)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {145, 144, 143} \[ \int (a+b x)^m (c+d x)^n (e+f x)^p \, dx=\frac {(a+b x)^{m+1} (c+d x)^n (e+f x)^p \left (\frac {b (c+d x)}{b c-a d}\right )^{-n} \left (\frac {b (e+f x)}{b e-a f}\right )^{-p} \operatorname {AppellF1}\left (m+1,-n,-p,m+2,-\frac {d (a+b x)}{b c-a d},-\frac {f (a+b x)}{b e-a f}\right )}{b (m+1)} \]

[In]

Int[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p,x]

[Out]

((a + b*x)^(1 + m)*(c + d*x)^n*(e + f*x)^p*AppellF1[1 + m, -n, -p, 2 + m, -((d*(a + b*x))/(b*c - a*d)), -((f*(
a + b*x))/(b*e - a*f))])/(b*(1 + m)*((b*(c + d*x))/(b*c - a*d))^n*((b*(e + f*x))/(b*e - a*f))^p)

Rule 143

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)/(b*(m + 1)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(b*c
- a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 144

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
(b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 145

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^
FracPart[n]/((b/(b*c - a*d))^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*(b*(c/(b*c -
 a*d)) + b*d*(x/(b*c - a*d)))^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] &&  !GtQ[b/(b*c - a*d), 0] &&  !SimplerQ[c + d*x, a + b*x] &&  !SimplerQ[e +
 f*x, a + b*x]

Rubi steps \begin{align*} \text {integral}& = \left ((c+d x)^n \left (\frac {b (c+d x)}{b c-a d}\right )^{-n}\right ) \int (a+b x)^m \left (\frac {b c}{b c-a d}+\frac {b d x}{b c-a d}\right )^n (e+f x)^p \, dx \\ & = \left ((c+d x)^n \left (\frac {b (c+d x)}{b c-a d}\right )^{-n} (e+f x)^p \left (\frac {b (e+f x)}{b e-a f}\right )^{-p}\right ) \int (a+b x)^m \left (\frac {b c}{b c-a d}+\frac {b d x}{b c-a d}\right )^n \left (\frac {b e}{b e-a f}+\frac {b f x}{b e-a f}\right )^p \, dx \\ & = \frac {(a+b x)^{1+m} (c+d x)^n \left (\frac {b (c+d x)}{b c-a d}\right )^{-n} (e+f x)^p \left (\frac {b (e+f x)}{b e-a f}\right )^{-p} F_1\left (1+m;-n,-p;2+m;-\frac {d (a+b x)}{b c-a d},-\frac {f (a+b x)}{b e-a f}\right )}{b (1+m)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.98 \[ \int (a+b x)^m (c+d x)^n (e+f x)^p \, dx=\frac {(a+b x)^{1+m} (c+d x)^n \left (\frac {b (c+d x)}{b c-a d}\right )^{-n} (e+f x)^p \left (\frac {b (e+f x)}{b e-a f}\right )^{-p} \operatorname {AppellF1}\left (1+m,-n,-p,2+m,\frac {d (a+b x)}{-b c+a d},\frac {f (a+b x)}{-b e+a f}\right )}{b (1+m)} \]

[In]

Integrate[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p,x]

[Out]

((a + b*x)^(1 + m)*(c + d*x)^n*(e + f*x)^p*AppellF1[1 + m, -n, -p, 2 + m, (d*(a + b*x))/(-(b*c) + a*d), (f*(a
+ b*x))/(-(b*e) + a*f)])/(b*(1 + m)*((b*(c + d*x))/(b*c - a*d))^n*((b*(e + f*x))/(b*e - a*f))^p)

Maple [F]

\[\int \left (b x +a \right )^{m} \left (d x +c \right )^{n} \left (f x +e \right )^{p}d x\]

[In]

int((b*x+a)^m*(d*x+c)^n*(f*x+e)^p,x)

[Out]

int((b*x+a)^m*(d*x+c)^n*(f*x+e)^p,x)

Fricas [F]

\[ \int (a+b x)^m (c+d x)^n (e+f x)^p \, dx=\int { {\left (b x + a\right )}^{m} {\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p} \,d x } \]

[In]

integrate((b*x+a)^m*(d*x+c)^n*(f*x+e)^p,x, algorithm="fricas")

[Out]

integral((b*x + a)^m*(d*x + c)^n*(f*x + e)^p, x)

Sympy [F(-1)]

Timed out. \[ \int (a+b x)^m (c+d x)^n (e+f x)^p \, dx=\text {Timed out} \]

[In]

integrate((b*x+a)**m*(d*x+c)**n*(f*x+e)**p,x)

[Out]

Timed out

Maxima [F]

\[ \int (a+b x)^m (c+d x)^n (e+f x)^p \, dx=\int { {\left (b x + a\right )}^{m} {\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p} \,d x } \]

[In]

integrate((b*x+a)^m*(d*x+c)^n*(f*x+e)^p,x, algorithm="maxima")

[Out]

integrate((b*x + a)^m*(d*x + c)^n*(f*x + e)^p, x)

Giac [F]

\[ \int (a+b x)^m (c+d x)^n (e+f x)^p \, dx=\int { {\left (b x + a\right )}^{m} {\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p} \,d x } \]

[In]

integrate((b*x+a)^m*(d*x+c)^n*(f*x+e)^p,x, algorithm="giac")

[Out]

integrate((b*x + a)^m*(d*x + c)^n*(f*x + e)^p, x)

Mupad [F(-1)]

Timed out. \[ \int (a+b x)^m (c+d x)^n (e+f x)^p \, dx=\int {\left (e+f\,x\right )}^p\,{\left (a+b\,x\right )}^m\,{\left (c+d\,x\right )}^n \,d x \]

[In]

int((e + f*x)^p*(a + b*x)^m*(c + d*x)^n,x)

[Out]

int((e + f*x)^p*(a + b*x)^m*(c + d*x)^n, x)